Stability Analysis of Unsteady Hybrid Nanofluid Flow over the Falkner-Skan Wedge

Author:

Zainal Nurul AmiraORCID,Nazar Roslinda,Naganthran KohilavaniORCID,Pop Ioan

Abstract

Numerous manufacturing processes, including the drawing of plastic films, have a major impact on mass transport. These functionalities necessitate the solution of the Falkner–Skan equation and some of its configurations when applied to various geometries and boundary conditions. Hence, the current paper discusses the impact of unsteady hybrid nanofluid flow on a moving Falkner–Skan wedge with a convective boundary condition. This problem is modeled by partial differential equations, which are then converted into ordinary (similar) differential equations using appropriate similarity transformations. The bvp4c technique in MATLAB solves these ordinary differential equations numerically. Since more than one solution is possible in this paper, stability analysis is conducted. Thus, it is found that only one stable solution is identified as reliable (physically realizable in practice). The skin friction coefficient and heat transfer rate, along with the velocity and temperature profile distributions, are examined to determine the values of several parameters. The findings reveal that dual-type nanoparticles and wedge angle parameters improve thermal efficiency. A lower value of the unsteadiness parameter reduces the efficiency of hybrid nanofluids in terms of heat transfer and skin friction coefficient, whereas increasing the Biot number of the working fluid does not affect the critical point in the current analysis.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference67 articles.

1. Enhancing thermal conductivity of fluids with nanoparticles;Choi;Proc. ASME Int. Mech. Eng. Congr. Expo. FED 231/MD,1995

2. A benchmark study on the thermal conductivity of nanofluids

3. Introduction to Nanomaterials: An Overview Toward Broad-Spectrum Applications, Nanomaterials in Bionanotechnology;Singh,2021

4. Smart Nanodevices for Point-of-Care Applications;Suvardhan,2021

5. Nanofluid Types, Their Synthesis, Properties and Incorporation in Direct Solar Thermal Collectors: A Review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3