Multiple solutions of unsteady flow of CNTs nanofluid over permeable shrinking surface with effects of dissipation and slip conditions

Author:

Dero Sumera1ORCID,Fadhel Mustafa Abbas2ORCID,Lund Liaquat Ali3ORCID,Shah Nehad Ali4ORCID

Affiliation:

1. Institute of Mathematics and Computer Science, University of Sindh, Jamshoro, Pakistan

2. Mathematics Department, College of Education for Pure Sciences, University of Al Muthanna, Samawa 66001, Iraq

3. KCAET Khairpur Mir’s, Sindh Agriculture University, Tandojam Sindh 70060, Pakistan

4. Department of Mechanical Engineering, Sejong University, Seoul 05006, South Korea

Abstract

The objective of this paper is to analyze the unsteady incompressible flow of the viscous nanofluid on a contracting surface with viscous dissipation effects. Presented and contrasted are analyses of both multi-wall carbon nanotubes (MWNTs) and single-wall carbon nanotubes (SWNTs). As the common (or base) fluids, kerosene oil and water are utilized. In the existence of first-order thermal and velocity slip conditions, mathematical modeling and analysis are performed. Using the MATLAB software’s bvp4c solver tool, numerical solutions to the governing nonlinear modeled problems were obtained. This technique is particularly effective for developing many solutions to highly nonlinear differential equations. In addition, a comparison is done between this study and previously published works. The temperature, velocity, skin friction coefficient and heat-transfer rate have been explored for various significant factors included in the problem statements. In the unsteadiness parameter regime, dual solutions can be found. As the velocity slip parameter is increased, the flow slows down. In comparison to SWCNTs kerosene, MWCNTs kerosene oil has a greater velocity curve for the nanoparticles volume fraction. Increases in volume fraction decrease skin friction, whereas increases in the unsteadiness parameter speed up the drag force. Furthermore, as the Eckert number intensity increases, so do the temperature profiles in both solutions. Finally, the stability study revealed that the initial solution is robust, whereas the breakage in the second solution in the Nusselt number shows singularity, and thus the second solution is considered unstable.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3