Abstract
To eliminate heavy noise and retain more scene details, we propose a structure-oriented total variation (TV) model based on data dependent kernel function and TV criterion for image denoising application. The innovative model introduces the weights produced from the local and nonlocal symmetry features involved in the image itself to pick more precise solutions in the TV denoising process. As a result, the proposed local and nonlocal steering kernel weighted TV model yields excellent noise suppression and structure-preserving performance. The experimental results verify the validity of the proposed model in objective quantitative indices and subjective visual appearance.
Funder
Natural Science Foundation of China
Fundamental Research Funds for the Central Universities of China
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献