AWGN Removal Using Modified Steering Kernel and Image Matching

Author:

Cheon Bong-WonORCID,Kim Nam-HoORCID

Abstract

Image noise occurs during acquisition and transmission and adversely affects processes, such as image segmentation and object recognition and classification. Various techniques are being studied for noise removal, and with the recent development of hardware and image processing algorithms, noise removal techniques that combine non-local techniques are attracting attention. However, one disadvantage of this method is that blurring occurs in the edges and boundary line of the resulting image. In this study, we proposed a modified local steering kernel based on image matching to improve these shortcomings. The proposed technique uses image matching to differentiate the weight obtained by the steering kernel according to the local characteristics of the image and calculates the weight of the filter based on the similarity between the center window and the matching window. The resulting images were quantitatively evaluation and enlargement of images were used and compared with the existing noise removal algorithms. The proposed algorithm showed clearer contrast in the enlarged images and better results than the conventional image restoration techniques in the quantitative evaluation using peak signal-to-noise ratio and structural similarity index.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference18 articles.

1. Noise reduction of hdr detail layer using a kalman filter adapted to local image activity;J. Korea Multimed. Soc.,2019

2. Modified gaussian filter based on fuzzy membership function for awgn removal in digital images;J. Inf. Commun. Converg. Eng.,2021

3. Non-local means denoising;Image Process. On Line,2011

4. Rudin–osher–fatemi total variation denoising using split bregman;Image Process. On Line,2012

5. Total variation image restoration using hyper-Laplacian prior with overlapping group sparsity;Signal Process.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3