A Deep Ensemble Learning Method for Effort-Aware Just-In-Time Defect Prediction

Author:

Albahli SalehORCID

Abstract

Since the introduction of just-in-time effort aware defect prediction, many researchers are focusing on evaluating the different learning methods, which can predict the defect inducing changes in a software product. In order to predict these changes, it is important for a learning model to consider the nature of the dataset, its unbalancing properties and the correlation between different attributes. In this paper, we evaluated the importance of these properties for a specific dataset and proposed a novel methodology for learning the effort aware just-in-time prediction of defect inducing changes. Moreover, we devised an ensemble classifier, which fuses the output of three individual classifiers (Random forest, XGBoost, Multi-layer perceptron) to build an efficient state-of-the-art prediction model. The experimental analysis of the proposed methodology showed significant performance with 77% accuracy on the sample dataset and 81% accuracy on different datasets. Furthermore, we proposed a highly competent reinforcement learning technique to avoid false alarms in real time predictions.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference31 articles.

1. When do changes induce fixes?;Jacekliwerski;SIGSOFT Softw. Eng. Notes,2005

2. Just-in-Time Modeling for Function Prediction and Its Applications

3. Predicting risk of software changes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3