Software Defect Prediction Using Deep Q-Learning Network-Based Feature Extraction

Author:

Zhang Qinhe1ORCID,Zhang Jiachen1ORCID,Feng Tie11ORCID,Xue Jialang1ORCID,Zhu Xinxin1ORCID,Zhu Ningyang1ORCID,Li Zhiheng1ORCID

Affiliation:

1. China

Abstract

Machine learning-based software defect prediction (SDP) approaches have been commonly proposed to help to deliver high-quality software. Unfortunately, all the previous research conducted without effective feature reduction suffers from high-dimensional data, leading to unsatisfactory prediction performance measures. Moreover, without proper feature reduction, the interpretability and generalization ability of machine learning models in SDP may be compromised, hindering their practical utility in diverse software development environments. In this paper, an SDP approach using deep Q-learning network (DQN)-based feature extraction is proposed to eliminate irrelevant, redundant, and noisy features and improve the classification performance. In the data preprocessing phase, the undersampling method of BalanceCascade is applied to divide the original datasets. As the first step of feature extraction, the weight ranking of all the metric elements is calculated according to the expected cross-entropy. Then, the relation matrix is constructed by applying random matrix theory. After that, the reward principle is defined for computing the Q value of Q-learning based on weight ranking, relation matrix, and the number of errors, according to which a convolutional neural network model is trained on datasets until the sequences of metric pairs are generated for all datasets acting as the revised feature set. Various experiments have been conducted on 11 NASA and 11 PROMISE repository datasets. Sensitive analysis experiments show that binary classification algorithms based on SDP approaches using the DQN-based feature extraction outperform those without using it. We also conducted experiments to compare our approach with four state-of-the-art approaches on common datasets, which show that our approach is superior to these methods in precision, F-measure, area under receiver operating characteristics curve, and Matthews correlation coefficient values.

Funder

National Key Research and Development Program of China

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3