In-Depth Investigation of Low-Abundance Proteins in Matured and Filling Stages Seeds of Glycine max Employing a Combination of Protamine Sulfate Precipitation and TMT-Based Quantitative Proteomic Analysis

Author:

Min Cheol WooORCID,Park Joonho,Bae Jin Woo,Agrawal Ganesh Kumar,Rakwal RandeepORCID,Kim Youngsoo,Yang Pingfang,Kim Sun TaeORCID,Gupta RaviORCID

Abstract

Despite the significant technical advancements in mass spectrometry-based proteomics and bioinformatics resources, dynamic resolution of soybean seed proteome is still limited because of the high abundance of seed storage proteins (SSPs). These SSPs occupy a large proportion of the total seed protein and hinder the identification of low-abundance proteins. Here, we report a TMT-based quantitative proteome analysis of matured and filling stages seeds of high-protein (Saedanbaek) and low-protein (Daewon) soybean cultivars by application of a two-way pre-fractionation both at the levels of proteins (by PS) and peptides (by basic pH reverse phase chromatography). Interestingly, this approach led to the identification of more than 5900 proteins which is the highest number of proteins reported to date from soybean seeds. Comparative protein profiles of Saedanbaek and Daewon led to the identification of 2200 and 924 differential proteins in mature and filling stages seeds, respectively. Functional annotation of the differential proteins revealed enrichment of proteins related to major metabolism including amino acid, major carbohydrate, and lipid metabolism. In parallel, analysis of free amino acids and fatty acids in the filling stages showed higher contents of all the amino acids in the Saedanbaek while the fatty acids contents were found to be higher in the Daewon. Taken together, these results provide new insights into proteome changes during filling stages in soybean seeds. Moreover, results reported here also provide a framework for systemic and large-scale dissection of seed proteome for the seeds rich in SSPs by two-way pre-fractionation combined with TMT-based quantitative proteome analysis.

Funder

National Research Foundation of Korea

Department of Biotechnology, Ministry of Science and Technology, India

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3