VIRIDIC—A Novel Tool to Calculate the Intergenomic Similarities of Prokaryote-Infecting Viruses

Author:

Moraru Cristina,Varsani ArvindORCID,Kropinski Andrew M.ORCID

Abstract

Nucleotide-based intergenomic similarities are useful to understand how viruses are related with each other and to classify them. Here we have developed VIRIDIC, which implements the traditional algorithm used by the International Committee on Taxonomy of Viruses (ICTV), Bacterial and Archaeal Viruses Subcommittee, to calculate virus intergenomic similarities. When compared with other software, VIRIDIC gave the best agreement with the traditional algorithm, which is based on the percent identity between two genomes determined by BLASTN. Furthermore, VIRIDIC proved best at estimating the relatedness between more distantly-related phages, relatedness that other tools can significantly overestimate. In addition to the intergenomic similarities, VIRIDIC also calculates three indicators of the alignment ability to capture the relatedness between viruses: the aligned fractions for each genome in a pair and the length ratio between the two genomes. The main output of VIRIDIC is a heatmap integrating the intergenomic similarity values with information regarding the genome lengths and the aligned genome fraction. Additionally, VIRIDIC can group viruses into clusters, based on user-defined intergenomic similarity thresholds. The sensitivity of VIRIDIC is given by the BLASTN. Thus, it is able to capture relationships between viruses having in common even short genomic regions, with as low as 65% similarity. Below this similarity level, protein-based analyses should be used, as they are the best suited to capture distant relationships. VIRIDIC is available at viridic.icbm.de, both as a web-service and a stand-alone tool. It allows fast analysis of large phage genome datasets, especially in the stand-alone version, which can be run on the user’s own servers and can be integrated in bioinformatics pipelines. VIRIDIC was developed having viruses of Bacteria and Archaea in mind; however, it could potentially be used for eukaryotic viruses as well, as long as they are monopartite.

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3