UAV-Derived Data Application for Environmental Monitoring of the Coastal Area of Lake Sevan, Armenia with a Changing Water Level

Author:

Medvedev Andrey,Telnova NataliaORCID,Alekseenko Natalia,Koshkarev AlexanderORCID,Kuznetchenko Pyotr,Asmaryan ShushanikORCID,Narykov Alexey

Abstract

The paper presents the range and applications of thematic tasks for ultra-high spatial resolution data from small unmanned aerial vehicles (UAVs) in the integral system of environmental multi-platform and multi-scaled monitoring of Lake Sevan, which is one of the greatest freshwater lakes in Eurasia. From the 1930s, it had been subjected to human-driven changing of the water level with associated and currently exacerbated environmental issues. We elaborated the specific techniques of optical and thermal surveys for the different coastal sites and phenomena in study. UAV-derived optical imagery and thermal stream were processed by a Structure-from-Motion algorithm to create digital surface models (DSMs) and ortho-imagery for several key sites. UAV imagery were used as additional sources of detailed spatial data under large-scale mapping of current land-use and point sources of water pollution in the coastal zone, and a main data source on environmental violations, especially sewage discharge or illegal landfills. The revealed present-day coastal types were mapped at a large scale, and the net changes of shoreline position and rates of shore erosion were calculated on multi-temporal UAV data using modified Hausdorff’s distance. Based on highly-detailed DSMs, we revealed the areas and objects at risk of flooding under the projected water level rise to 1903.5 m along the west coasts of Minor Sevan being the most popular recreational area. We indicated that the structural and environmental state of marsh coasts and coastal wetlands as potential sources of lake eutrophication and associated algal blooms could be more efficiently studied under thermal UAV surveys than optical ones. We proposed to consider UAV surveys as a necessary intermediary between ground data and satellite imagery with different spatial resolutions for the complex environmental monitoring of the coastal area and water body of Lake Sevan as a whole.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3