Estimation of Water Quality Parameters in Oligotrophic Coastal Waters Using Uncrewed-Aerial-Vehicle-Obtained Hyperspectral Data

Author:

Galešić Divić Morena1ORCID,Kvesić Ivanković Marija23ORCID,Divić Vladimir1ORCID,Kišević Mak2,Panić Marko4ORCID,Lugonja Predrag4ORCID,Crnojević Vladimir4,Andričević Roko12

Affiliation:

1. Faculty of Civil Engineering, Architecture and Geodesy, University of Split, 21000 Split, Croatia

2. Center of Excellence for Science and Technology-Integration of Mediterranean Region, University of Split, 21000 Split, Croatia

3. Doctoral Study of Biophysics, Faculty of Science, University of Split, 21000 Split, Croatia

4. BioSense Institute, University of Novi Sad, 21000 Novi Sad, Serbia

Abstract

Water quality monitoring in coastal areas and estuaries poses significant challenges due to the intricate interplay of hydrodynamic, chemical, and biological processes, regardless of the chosen monitoring methods. In this study, we analyzed the applicability of different monitoring sources using in situ data, uncrewed-aerial-vehicle (UAV)-mounted hyperspectral sensing, and Sentinel-2-based multispectral imagery. In the first part of the study, we evaluated the applicability of existing empirical algorithms for water quality (WQ) parameter retrieval using hyperspectral, simulated multispectral, and satellite multispectral datasets and in situ measurements. In particular, we focused on three optically active WQ parameters: chlorophyll a (Chl,a), turbidity (TUR), and colored dissolved organic matter (CDOM) in oligotrophic coastal waters. We observed that most existing algorithms performed poorly when applied to different reflectance datasets, similar to previous findings in small and optically complex water bodies. Hence, we proposed a novel set of locally based empirical algorithms tailored for determining water quality parameters, which constituted the second part of our study. The newly developed regression-based algorithms utilized all possible combinations of spectral bands derived from UAV-generated hyperspectral data and exhibited coefficients of determination exceeding 0.9 for the three considered WQ parameters. The presented two-part approach was demonstrated in the semi-enclosed area of Kaštela Bay and the Jadro River estuary in the Central Eastern Adriatic Sea. This study introduces a promising and efficient screening method for UAV-based water quality monitoring in coastal areas worldwide. Such an approach may support decision-making processes related to coastal management and ultimately contribute to the conservation of coastal water ecosystems.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3