An Analytical Framework for Accurate Traffic Flow Parameter Calculation from UAV Aerial Videos

Author:

Brkić Ivan,Miler MarioORCID,Ševrović Marko,Medak Damir

Abstract

Unmanned Aerial Vehicles (UAVs) represent easy, affordable, and simple solutions for many tasks, including the collection of traffic data. The main aim of this study is to propose a new, low-cost framework for the determination of highly accurate traffic flow parameters. The proposed framework consists of four segments: terrain survey, image processing, vehicle detection, and collection of traffic flow parameters. The testing phase of the framework was done on the Zagreb bypass motorway. A significant part of this study is the integration of the state-of-the-art pre-trained Faster Region-based Convolutional Neural Network (Faster R-CNN) for vehicle detection. Moreover, the study includes detailed explanations about vehicle speed estimation based on the calculation of the Mean Absolute Percentage Error (MAPE). Faster R-CNN was pre-trained on Common Objects in COntext (COCO) images dataset, fine-tuned on 160 images, and tested on 40 images. A dual-frequency Global Navigation Satellite System (GNSS) receiver was used for the determination of spatial resolution. This approach to data collection enables extraction of trajectories for an individual vehicle, which consequently provides a method for microscopic traffic flow parameters in detail analysis. As an example, the trajectories of two vehicles were extracted and the comparison of the driver’s behavior was given by speed—time, speed—space, and space—time diagrams.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference46 articles.

1. European Automobile Manufacturers Association Vehicles in use Europe 2019https://www.acea.be/uploads/statistic_documents/ACEA_Report_Vehicles_in_use-Europe_2017.pdf

2. Traffic flow theory and modelling;Hoogendoorn;Transp. Syst. Transp. Policy Introd.,2012

3. Road Traffic Data: Collection Methods and Applications;Leduc,2008

4. Low-Cost and Data Anonymised City Traffic Flow Data Collection to Support Intelligent Traffic System

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3