Comparison of Artificial Neural Network and Polynomial Approximation Models for Reflectance Spectra Reconstruction

Author:

Lazar Mihael,Hladnik AlešORCID

Abstract

Knowledge of surface reflection of an object is essential in many technological fields, including graphics and cultural heritage. Compared to direct multi- or hyper-spectral capturing approaches, commercial RGB cameras allow for a high resolution and fast acquisition, so the idea of mapping this information into a reflectance spectrum (RS) is promising. This study compared two modelling approaches based on a training set of RGB-reflectance pairs, one implementing artificial neural networks (ANN) and the other one using multivariate polynomial approximation (PA). The effect of various parameters was investigated: the ANN learning algorithm—standard backpropagation (BP) or Levenberg-Marquardt (LM), the number of hidden layers (HLs) and neurons, the degree of multivariate polynomials in PA, the number of inputs, and the training set size on both models. In the two-layer ANN with significantly fewer inputs than outputs, a better MSE performance was found where the number of neurons in the first HL was smaller than in the second one. For ANNs with one and two HLs with the same number of neurons in the first layer, the RS reconstruction performance depends on the choice of BP or LM learning algorithm. RS reconstruction methods based on ANN and PA are comparable, but the ANN models’ better fine-tuning capabilities enable, under realistic constraints, finding ANNs that outperform PA models. A profiling approach was proposed to determine the initial number of neurons in HLs—the search centre of ANN models for different training set sizes.

Funder

Slovenian Research Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3