UAV-Borne Hyperspectral Imaging Remote Sensing System Based on Acousto-Optic Tunable Filter for Water Quality Monitoring

Author:

Liu HongORCID,Yu Tao,Hu Bingliang,Hou Xingsong,Zhang Zhoufeng,Liu Xiao,Liu Jiacheng,Wang Xueji,Zhong Jingjing,Tan Zhengxuan,Xia Shaoxia,Qian Bao

Abstract

Unmanned aerial vehicle (UAV) hyperspectral remote sensing technologies have unique advantages in high-precision quantitative analysis of non-contact water surface source concentration. Improving the accuracy of non-point source detection is a difficult engineering problem. To facilitate water surface remote sensing, imaging, and spectral analysis activities, a UAV-based hyperspectral imaging remote sensing system was designed. Its prototype was built, and laboratory calibration and a joint air–ground water quality monitoring activity were performed. The hyperspectral imaging remote sensing system of UAV comprised a light and small UAV platform, spectral scanning hyperspectral imager, and data acquisition and control unit. The spectral principle of the hyperspectral imager is based on the new high-performance acousto-optic tunable (AOTF) technology. During laboratory calibration, the spectral calibration of the imaging spectrometer and image preprocessing in data acquisition were completed. In the UAV air–ground joint experiment, combined with the typical water bodies of the Yangtze River mainstream, the Three Gorges demonstration area, and the Poyang Lake demonstration area, the hyperspectral data cubes of the corresponding water areas were obtained, and geometric registration was completed. Thus, a large field-of-view mosaic and water radiation calibration were realized. A chlorophyl-a (Chl-a) sensor was used to test the actual water control points, and 11 traditional Chl-a sensitive spectrum selection algorithms were analyzed and compared. A random forest algorithm was used to establish a prediction model of water surface spectral reflectance and water quality parameter concentration. Compared with the back propagation neural network, partial least squares, and PSO-LSSVM algorithms, the accuracy of the RF algorithm in predicting Chl-a was significantly improved. The determination coefficient of the training samples was 0.84; root mean square error, 3.19 μg/L; and mean absolute percentage error, 5.46%. The established Chl-a inversion model was applied to UAV hyperspectral remote sensing images. The predicted Chl-a distribution agreed with the field observation results, indicating that the UAV-borne hyperspectral remote sensing water quality monitoring system based on AOTF is a promising remote sensing imaging spectral analysis tool for water.

Funder

Chinese Academy of Sciences

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3