Dynamic Response of Deep-Sea Trawl System during Towing Process

Author:

Zhang DapengORCID,Zhao BowenORCID,Zhu Keqiang,Jiang Haoyu

Abstract

The trawl system plays an irreplaceable role in deep-sea fishing. In the towing process of the trawl system, many complex mechanical phenomena occurs, so it is necessary to analyze the dynamic response of the deep-sea trawl system during the towing process. In this paper, an equivalent mathematical model for predicating the movement of the ocean trawl system is established based on the equivalent net theory. In the proposed method, the lumped mass method is used to simulate the towed cable and some lines with hydrodynamic characteristics are used to simulate the fishing net. The effects of towing speeds on the dynamic characteristics of a rigid truss trawl system and a flexible trawl system during straight-line towing and rotation towing are studied. The results show that it is possible to simulate trawl motion, and the trawling process is well-presented using this equivalent mathematical model. The disadvantage of this method is also obvious, that is, it cannot simulate trawls with a large number of meshes because the proliferation of mesh numbers can lead to difficult computational convergence. The results also demonstrate that during straight-line towing, the higher the speed, the greater the tension of the cable. Due to the rigid truss, the shape of the rigid truss trawl under different towing speeds is not much different, while the shape of the flexible trawl system changes greatly. During rotating towing, the tension of the cable changes abruptly in the initial stage, and then fluctuates periodically in the time domain. With the increase of towing speed, the overall outward floating distance of the trawl increases gradually. This study has a certain reference and guiding role for deep-sea fishing operations.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference36 articles.

1. A re-appraisal of the total biomass and annual production of Antarctic krill;Atkinson;Deep. Sea Res. Part I Oceanogr. Res. Pap.,2009

2. The fishery for Antarctic krill–recent developments;Nicol;Fish Fish.,2012

3. Reconstructing global marine fishing gear use: Catches and landed values by gear type and sector;Cashion;Fish. Res.,2018

4. The gear shape and cross section of sweep at mouth of a bottom trawl;Park;J. Korean Soc. Fish. Ocean Technol.,2008

5. Sala, A., Lucchetti, A., Palumbo, V., and Hansen, K. (2008). Maritime Industry, Ocean Engineering and Coastal Resources, Taylor & Francis Group.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3