Numerical Method for Predicting Emissions from Biodiesel Blend Fuels in Diesel Engines of Inland Waterway Vessels

Author:

Wu GangORCID,Li Jiaoxiu,Guo Hao,Wang Xin,Jiang Guohe

Abstract

The use of alternative fuels in ships faces the dual challenge of emission regulations and cost of use. In this paper, the impact of biodiesel blends from cooking waste as a carbon-neutral fuel for inland waterway vessels was investigated. The software AVL FIRE was used to simulate the detailed chemical combustion process of a marine diesel engine running on D100 (pure diesel), B5 (5% biodiesel by volume), B10 (10% biodiesel by volume), and B15 (15% biodiesel by volume). The results showed that B5, B10, and B15 all provided a better air-fuel mixture and significantly reduced soot production. Based on the performance and emission values, B5, B10, and B15 cause relatively small differences in engine performance compared to diesel and are readily applicable in practice. Optimizing exhaust gas recirculation (EGR) and varying injection timing can further optimize biodiesel fuel combustion while reducing NOx and soot emissions. The results of this study are helpful for the application of waste cooking oil biodiesel fuel and reducing exhaust gas emissions from ships.

Funder

Science & Technology Commission of Shanghai Municipality and Shanghai Engineering Research Center of Ship Intelligent Maintenance and Energy Efficiency

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3