Abstract
Site-specific nutrient management can reduce soil degradation and crop production risks related to undesirable timing, amount, and type of fertilizer application. This study was conducted to understand the spatial variability of soil properties and delineate spatially homogenous nutrient management zones (MZs) in the maize belt region of Nigeria. Soil samples (n = 3387) were collected across the area using multistage and random sampling techniques, and samples were analyzed for pH, soil organic carbon (SOC), macronutrients (N, P, K, S, Ca and Mg), micronutrients (S, B, Zn, Mn and Fe) content, and effective cation exchange capacity (ECEC). Spatial distribution and variability of these parameters were assessed using geostatistics and ordinary kriging, while principal component analysis (PCA) and multivariate K-means cluster analysis were used to delineate nutrient management zones. Results show that spatial variation of macronutrients (total N, available P, and K) was largely influenced by intrinsic factors, while that of S, Ca, ECEC, and most micronutrients was influenced by both intrinsic and extrinsic factors with moderate to high spatial variability. Four distinct management zones, namely, MZ1, MZ2, MZ3, and MZ4, were identified and delineated in the area. MZ1 and MZ4 have the highest contents of most soil fertility indicators. MZ4 has a higher content of available P, Zn, and pH than MZ1. MZ2 and MZ3, which constitute the larger part of the area, have smaller contents of the soil fertility indicators. The delineated MZs offer a more feasible option for developing and implementing site-specific nutrient management in the maize belt region of Nigeria.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development