Full Three-Dimensional Inverse Design Method for S-Ducts Using a New Dimensionless Flow Parameter

Author:

Kariminia Atefeh,Nili-Ahmadabadi MahdiORCID,Kim Kyung ChunORCID

Abstract

In this study, a new inverse design method is proposed for the full 3-D inverse design of S-ducts using curvature-based dimensionless pressure distribution as a target function. The wall pressure distribution in a 3-D curved duct is a function of the centerline curvature and the cross-sectional profile and area. A dimensionless pressure parameter was obtained as a function of the duct curvature and height of the cross-sections based on the normal pressure gradient equation. The dimensionless pressure parameter was used to eliminate the effect of the cross-sectional area on the wall pressure distribution. Full 3-D inverse design of an S-shaped duct was carried out by substituting the 3-D duct with a large number of 2-D planar ducts. The ball-spine inverse design method with vertical spins was coupled with the dimensionless pressure parameter as a target function for the design of the planar ducts. The inverse design process was performed in two steps. First, the height of each cross-section was considered constant, and only the duct centerline was allowed to be deformed by applying the difference between the dimensionless pressure on the upper and lower lines of symmetry plane. Then, a constant curvature was considered for each centerline in the equation, and the difference between the current and the target dimensionless pressure was applied to each upper and lower line of the planar sections to correct the heights of the 2-D planar sections, separately. The method was validated by choosing a straight duct as an initial guess, which converges to the target S-shaped duct. The results showed that the method is an efficient physical-based residual-correction method with low computational cost and good convergence rate. The 3-D wall pressure distribution of a high-deflected 3-D S-shaped diffuser was modified to eliminate the separation, secondary flow, and outlet distortion. Finally, the geometry corresponding to the modified pressure was obtained by the proposed 3-D inverse design method, which revealed higher pressure recovery, lower total pressure loss, and lower outlet flow distortion and swirl angle.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3