Aerodynamic Inverse Design of Transonic Compressor Cascades with Stabilizing Elastic Surface Algorithm

Author:

Noorsalehi Mohammad Hossein,Nili-Ahmadabadi MahdiORCID,Nasrazadani Seyed Hossein,Kim Kyung ChunORCID

Abstract

The upgraded elastic surface algorithm (UESA) is a physical inverse design method that was recently developed for a compressor cascade with double-circular-arc blades. In this method, the blade walls are modeled as elastic Timoshenko beams that smoothly deform because of the difference between the target and current pressure distributions. Nevertheless, the UESA is completely unstable for a compressor cascade with an intense normal shock, which causes a divergence due to the high pressure difference near the shock and the displacement of shock during the geometry corrections. In this study, the UESA was stabilized for the inverse design of a compressor cascade with normal shock, with no geometrical filtration. In the new version of this method, a distribution for the elastic modulus along the Timoshenko beam was chosen to increase its stiffness near the normal shock and to control the high deformations and oscillations in this region. Furthermore, to prevent surface oscillations, nodes need to be constrained to move perpendicularly to the chord line. With these modifications, the instability and oscillation were removed through the shape modification process. Two design cases were examined to evaluate the method for a transonic cascade with normal shock. The method was also capable of finding a physical pressure distribution that was nearest to the target one.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Upgrade in the elastic surface algorithm for airfoil inverse design with variable attack angle via controlled leading-edge movement;Journal of Mechanical Science and Technology;2024-08-02

2. Optimization of the target pressure distribution and inverse design of an axial turbine blade;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-02-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3