High-Speed Micro-Particle Motion Monitoring Based on Continuous Single-Frame Multi-Exposure Technology

Author:

Wang Wei,Xue Weiwei,Wu Shufan,Mu ZhongchengORCID,Yi Jiyuan,Tang Andrew J.

Abstract

The impact phenomena of solid micro-particles have gathered increasing interest across a wide range of fields, including space debris protection and cold-spray additive manufacturing of large, complicated structures. Effective motion monitoring is essential to understanding the impact behaviors of micro-particles. Consequently, a convenient and efficient micro-particle motion monitoring solution is proposed based on continuous single-frame multiple-exposure imaging technology. This method adopts a camera with excellent low-light performance coupled with high-frequency light-emitting diode (LED) flashes to generate short interval illumination. This technology can, in theory, achieve 1 million effective frames per second (fps) and monitor particles as small as 10 microns with speeds up to 12 km/s. The capabilities of the proposed method were validated by a series of micro-particle motion monitoring experiments with different particles sizes and materials under varying camera configurations. The study provides a feasible and economical solution for the velocity measurement and motion monitoring of high-speed micro-particles.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Reference49 articles.

1. Elastic flattening and particle adhesion;Goren;Aerosol Sci. Technol.,1990

2. Study on Dynamic Characteristics of Micro-Scale Particles Impacting Flat Surface;Xie,2017

3. Role of ultrasonic shot peening in environmental hydrogen embrittlement behavior of 7075-t6 alloy;Moshtaghi;Hydrogen,2021

4. Contact Mechanics;Johnson,2001

5. Application and development of shot peening technology;Xue;J. Mater. Prot.,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3