Dual-Scale Porosity Alumina Structures Using Ceramic/Camphene Suspensions Containing Polymer Microspheres

Author:

Lee Hyun,Jeon Jong-Won,Koh Young-Hag,Kim Hyoun-Ee

Abstract

This study demonstrates the utility of thermo-regulated phase separable alumina/camphene suspensions containing poly(methyl methacrylate) (PMMA) microspheres as porogens for the production of multi-scale porosity structures. The homogeneous suspension prepared at 60 °C could undergo phase separation during freezing at room temperature. This process resulted in the 3D networks of camphene crystals and alumina walls containing PMMA microspheres. As a consequence, relatively large dendritic pores with several tens of microns size could be created as the replica of frozen camphene crystals. In addition, after the removal of PMMA microspheres via heat-treatment, micron-sized small spherical pores could be generated in alumina walls. As the PMMA content with respect to the alumina content increased from 0 vol% to 40 vol%, while the camphene content in the suspensions was kept constant (70 vol%), the overall porosity increased from 45.7 ± 0.5 vol% to 71.4 ± 0.5 vol%. This increase in porosity is attributed to an increase in the fraction of spherical pores in the alumina walls. Thus, compressive strength decreased from 153 ± 18.3 MPa to 33 ± 7.2 MPa. In addition, multi-scale porosity alumina objects with a honeycomb structure comprising periodic hexagonal macrochannels surrounded by dual-scale porosity walls were constructed using a 3D plotting technique.

Funder

Korea University

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3