Wear Mechanisms and Notch Formation of Whisker-Reinforced Alumina and Sialon Ceramic Tools during High-Speed Turning of Inconel 718

Author:

Xue Chao,Wang Dong,Zhang Jingjing

Abstract

Nickel-based alloys, referred to as the most difficult-to-cut materials, pose a great challenge to cutting tool materials due to their excellent high-temperature properties. Ceramic tools have the potential to improve the machinability of these alloys with the advance of toughening mechanisms. In this work, the wear mechanisms of SiC whisker-reinforced alumina and Sialon when high-speed turning Inconel 718 alloy under dry cutting condition were investigated. The results showed that the wear process of Al2O3-SiCw WG300 was dominated by the notch wear, while the flank wear characterized by ridges and grooves perpendicular to the cutting edge was the main wear mode for Sialon SX9. A Ti−enriched belt was found at the boundary of the wear band for both ceramic tools. The SEM inspection and EDS analysis for this belt suggested the trace of diffusion between the workpiece material and tool matrix. As for the notch formation, the periodically adhesive action of the workpiece material at the depth-of-cut line combined with the thermal shock resistance of ceramic tools were considered to account for its formation. In addition, the oxidation of the workpiece material at the depth-of-cut line played a positive role in reducing the adhesive affinity and consequent notch wear.

Funder

Scientific Research Program Funded by Shaanxi Provincial Education Department

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3