Design of a Robust Controller Based on Barrier Function for Vehicle Steer-by-Wire Systems

Author:

Husain Suha S.1ORCID,Al-Dujaili Ayad Q.2ORCID,Jaber Alaa Abdulhady3ORCID,Humaidi Amjad J.4ORCID,Al-Azzawi Raaed S.4ORCID

Affiliation:

1. Department of Construction and Projects, University of Technology, Baghdad 10066, Iraq

2. Electrical Engineering Technical College, Middle Technical University, Baghdad 10066, Iraq

3. Mechanical Engineering Department, University of Technology, Baghdad 10066, Iraq

4. Control and System Engineering Department, University of Technology, Baghdad 10066, Iraq

Abstract

In this research paper, a recent robust control scheme was proposed and designed for a VSbW (vehicle steer-by-wire) system. Using an integral sliding mode control (ISMC) design based on barrier function (ISMCbf) could improve the robustness of ISMCs. This control scheme, due to the characteristics of the barrier function, can improve the robustness of the proposed controller better than that based on the conventional SMC or integral SMC (ISMC). The ISMCbf scheme exhibits all the benefits of the conventional ISMC with the addition of two main advantages: it does not require prior knowledge of perturbation bounds or their derivatives, and it can effectively eliminate the chattering phenomenon associated with the classical ISMC due to the smooth characteristics of the barrier function. On the other hand, in terms of the design implementation, the ISMCbf is simpler than the ISMC. In this study, the mathematical dynamical model of the VSbW plant was first presented. Then, the control design of the ISMCbf scheme was developed. The numerical results showed that the proposed scheme is superior to the conventional ISMC. The superiority of the proposed ISMCbf controller versus the classical ISM has been evaluated under three different uncertain conditions, and three scenarios can be deduced: a slalom path, quick steering, and shock disturbance rejection. Furthermore, a comparative analysis with other controllers from the literature has further been established to show the effectiveness of the proposed ISMCbf.

Publisher

MDPI AG

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3