Shear-Actuation and Vibrometer Reception of Penetrating Ultrasonic Guided Wave Modes in Human Tibia

Author:

Guha Anurup,Aynardi Michael,Shokouhi Parisa,Lissenden Cliff J.ORCID

Abstract

The hollow long bones of the human appendicular skeleton are known to support the propagation of ultrasonic guided waves, whose potential for diagnosing bone health is being investigated. In this study, ultrasonic guided waves propagating in the diaphysis of human tibia are characterized experimentally and numerically in the frequency range around 200 kHz. The experiment involves a unique combination of omni-directional shear transducer-based excitation and detection using a 1D laser Doppler vibrometer. The cluster of phase velocities obtained from a linear array of time-history data using space-time Fourier transform is found to be in the non-dispersive low-phase velocity region of the dispersion curves obtained for a tibial cross-section. Time-domain finite element analysis revealed that the displacement components normal to the surface are significant, even though the loading is from a shear transducer. Furthermore, semi-analytical finite element analysis revealed that the wave structures of the wave modes contained within the cluster of low-phase velocity modes are consistent with the displacement profiles obtained from the time-domain analysis. The experimental results show that the low-phase velocity mode cluster has sufficient intensity to propagate axially at least 85 mm in the mid-diaphyseal region.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3