Screening Patients with Early Stage Parkinson’s Disease Using a Machine Learning Technique: Measuring the Amount of Iron in the Basal Ganglia

Author:

Lee Seon,Oh Se-Hong,Park Sun-WonORCID,Shin Chaewon,Kim Jeehun,Rhim Jung-Hyo,Lee Jee-Young,Choi Joon-YulORCID

Abstract

The purpose of this study was to determine whether a support vector machine (SVM) model based on quantitative susceptibility mapping (QSM) can be used to differentiate iron accumulation in the deep grey matter of early Parkinson’s disease (PD) patients from healthy controls (HC) and Non-Motor Symptoms Scale (NMSS) scores in early PD patients. QSM values on magnetic resonance imaging (MRI) were obtained for 24 early PD patients and 27 age-matched HCs. The mean QSM values in deep grey matter areas were used to construct SVM and logistic regression (LR) models to differentiate between early PD patients and HCs. Additional SVM and LR models were constructed to differentiate between low and high NMSS scores groups. A paired t-test was used to assess the classification results. For the differentiation between early PD patients and HCs, SVM had an accuracy of 0.79 ± 0.07, and LR had an accuracy of 0.73 ± 0.03 (p = 0.027). SVM for NMSS classification had a fairly high accuracy of 0.79 ± 0.03, while LR had 0.76 ± 0.04. An SVM model based on QSM offers competitive accuracy for screening early PD patients and evaluates non-motor symptoms, which may offer clinicians the ability to assess the progression of motor symptoms in the patient population.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3