Iron deposition in subcortical nuclei of Parkinson’s disease: A meta-analysis of quantitative iron-sensitive magnetic resonance imaging studies

Author:

Jin Jianing12,Su Dongning12,Zhang Junjiao12,Lam Joyce S. T.3,Zhou Junhong45,Feng Tao12

Affiliation:

1. Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China

2. China National Clinical Research Center for Neurological Diseases, Beijing 100070, China

3. Pacific Parkinson’s Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

4. Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA 02131, United States

5. Harvard Medical School, Boston, MA 02210, United States

Abstract

Abstract Background: Iron deposition plays a crucial role in the pathophysiology of Parkinson’s disease (PD), yet the distribution pattern of iron deposition in the subcortical nuclei has been inconsistent across previous studies. We aimed to assess the difference patterns of iron deposition detected by quantitative iron-sensitive magnetic resonance imaging (MRI) between patients with PD and patients with atypical parkinsonian syndromes (APSs), and between patients with PD and healthy controls (HCs). Methods: A systematic literature search was conducted on PubMed, Embase, and Web of Science databases to identify studies investigating the iron content in PD patients using the iron-sensitive MRI techniques (R2* and quantitative susceptibility mapping [QSM]), up until May 1, 2023. The quality assessment of case-control and cohort studies was performed using the Newcastle-Ottawa Scale, whereas diagnostic studies were assessed using the Quality Assessment of Diagnostic Accuracy Studies-2. Standardized mean differences and summary estimates of sensitivity, specificity, and area under the curve (AUC) were calculated for iron content, using a random effects model. We also conducted the subgroup-analysis based on the MRI sequence and meta-regression. Results: Seventy-seven studies with 3192 PD, 209 multiple system atrophy (MSA), 174 progressive supranuclear palsy (PSP), and 2447 HCs were included. Elevated iron content in substantia nigra (SN) pars reticulata (P <0.001) and compacta (P <0.001), SN (P <0.001), red nucleus (RN, P <0.001), globus pallidus (P <0.001), putamen (PUT, P = 0.009), and thalamus (P = 0.046) were found in PD patients compared with HCs. PD patients showed lower iron content in PUT (P <0.001), RN (P = 0.003), SN (P = 0.017), and caudate nucleus (P = 0.027) than MSA patients, and lower iron content in RN (P = 0.001), PUT (P <0.001), globus pallidus (P = 0.004), SN (P = 0.015), and caudate nucleus (P = 0.001) than PSP patients. The highest diagnostic accuracy distinguishing PD from HCs was observed in SN (AUC: 0.85), and that distinguishing PD from MSA was found in PUT (AUC: 0.90). In addition, the best diagnostic performance was achieved in the RN for distinguishing PD from PSP (AUC: 0.84). Conclusion: Quantitative iron-sensitive MRI could quantitatively detect the iron content of subcortical nuclei in PD and APSs, while it may be insufficient to accurately diagnose PD. Future studies are needed to explore the role of multimodal MRI in the diagnosis of PD. Registrision: PROSPERO; CRD42022344413.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3