A Deep Learning Approach for Automatic Hate Speech Detection in the Saudi Twittersphere

Author:

Alshalan RaghadORCID,Al-Khalifa HendORCID

Abstract

With the rise of hate speech phenomena in the Twittersphere, significant research efforts have been undertaken in order to provide automatic solutions for detecting hate speech, varying from simple machine learning models to more complex deep neural network models. Despite this, research works investigating hate speech problem in Arabic are still limited. This paper, therefore, aimed to investigate several neural network models based on convolutional neural network (CNN) and recurrent neural network (RNN) to detect hate speech in Arabic tweets. It also evaluated the recent language representation model bidirectional encoder representations from transformers (BERT) on the task of Arabic hate speech detection. To conduct our experiments, we firstly built a new hate speech dataset that contained 9316 annotated tweets. Then, we conducted a set of experiments on two datasets to evaluate four models: CNN, gated recurrent units (GRU), CNN + GRU, and BERT. Our experimental results in our dataset and an out-domain dataset showed that the CNN model gave the best performance, with an F1-score of 0.79 and area under the receiver operating characteristic curve (AUROC) of 0.89.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference49 articles.

1. Detection of Hate Speech in Social Networks: A Survey on Multilingual Corpus;Al-Hassan,2019

2. A Survey on Hate Speech Detection using Natural Language Processing;Schmidt,2017

3. Hateful Symbols or Hateful People? Predictive Features for Hate Speech Detection on Twitter;Waseem,2016

4. Automated Hate Speech Detection and the Problem of Offensive Language;Davidson;arXiv,2017

5. Right-wing German hate speech on Twitter: Analysis and automatic detection;Jaki;airXiv,2018

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3