Toward Robust Arabic AI-Generated Text Detection: Tackling Diacritics Challenges

Author:

Alshammari Hamed1,Elleithy Khaled1ORCID

Affiliation:

1. Department of Computer Science and Engineering, University of Bridgeport, Bridgeport, CT 06604, USA

Abstract

Current AI detection systems often struggle to distinguish between Arabic human-written text (HWT) and AI-generated text (AIGT) due to the small marks present above and below the Arabic text called diacritics. This study introduces robust Arabic text detection models using Transformer-based pre-trained models, specifically AraELECTRA, AraBERT, XLM-R, and mBERT. Our primary goal is to detect AIGTs in essays and overcome the challenges posed by the diacritics that usually appear in Arabic religious texts. We created several novel datasets with diacritized and non-diacritized texts comprising up to 9666 HWT and AIGT training examples. We aimed to assess the robustness and effectiveness of the detection models on out-of-domain (OOD) datasets to assess their generalizability. Our detection models trained on diacritized examples achieved up to 98.4% accuracy compared to GPTZero’s 62.7% on the AIRABIC benchmark dataset. Our experiments reveal that, while including diacritics in training enhances the recognition of the diacritized HWTs, duplicating examples with and without diacritics is inefficient despite the high accuracy achieved. Applying a dediacritization filter during evaluation significantly improved model performance, achieving optimal performance compared to both GPTZero and the detection models trained on diacritized examples but evaluated without dediacritization. Although our focus was on Arabic due to its writing challenges, our detector architecture is adaptable to any language.

Publisher

MDPI AG

Reference47 articles.

1. Language models are few-shot learners;Brown;Adv. Neural Inf. Process. Syst.,2020

2. Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung, H.W., Sutton, C., and Gehrmann, S. (2022). Palm: Scaling language modeling with pathways. arXiv.

3. OpenAI (2023, March 30). ChatGPT (Mar 14 Version) [Large Language Model]. Available online: https://chat.openai.com/chat.

4. Bard, G.A. (2023, October 10). BARD. Available online: https://bard.google.com/.

5. (2024, February 01). Gemini. Available online: https://gemini.google.com/app.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3