Abstract
Porous rGO/SiO2 nanocomposites with a “core-shell” structure were prepared as an efficient adsorbent for the liquid-phase adsorption of cationic neutral red (NR) dye. The samples were characterized with powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TG), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and N2 and water vapor adsorption/desorption methods. The NR removal ability and kinetics of the adsorption process of SiO2 and the rGO/SiO2 nanocomposites were investigated at 298 K. The rGO/SiO2 nanocomposite SG 0.30 showed a superior adsorption of NR dye. In regard to NR at pH 5, we measured a superior adsorption capacity of 66.635 mg/g at an initial NR concentration of 50 mg/L. The experimental adsorption capacity of SG 0.30 was 3.791 times higher than that of SiO2. Then, we compared the results with similar materials used for NR removal. Moreover, the water adsorption sites provided by the nitrogen- and oxygen-containing groups might be one of the reasons for the increased adsorption of water vapor. The broad range of properties of the rGO/SiO2 nanocomposite, including its simple synthesis, ability to be mass prepared, and strong adsorption properties, makes it a truly novel adsorbent that can be industrially produced, and shows potential application in the treatment of wastewater-containing dyes.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献