Synthesis of Mesoporous and Hollow SiO2@ Eu(TTA)3phen with Enhanced Fluorescence Properties

Author:

Wang Zhiheng1,Hu Xiaoli1,Yang Yinqi1,Wang Wei1,Wang Yao1,Gong Xuezhong1ORCID,Geng Caiyun1,Tang Jianguo1ORCID

Affiliation:

1. Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China

Abstract

Lanthanide ions are extensively utilized in optoelectronic materials, owing to their narrow emission bandwidth, prolonged lifetime, and elevated fluorescence quantum yield. Inorganic non-metallic materials commonly serve as host matrices for lanthanide complexes, posing noteworthy challenges regarding loading quantity and fluorescence performance stability post-loading. In this investigation, an enhanced Stöber method was employed to synthesize mesoporous hollow silica, and diverse forms of SiO2@Eu(TTA)3phen (S@Eu) were successfully prepared. Transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS) outcomes revealed the effective binding of silica with Eu(TTA)3phen through both physical adsorption and chemical bonding. This includes the formation of Si-O-C bonds between silica and the ligand, as well as Si-O-Eu bonds between silica and europium ions. Fluorescence tests demonstrated that the mesoporous SiO2@Eu(TTA)3phen(MS@Eu) composite exhibited the highest fluorescence intensity among the three structured silica composites, with a notable enhancement of 46.60% compared to the normal SiO2@Eu(TTA)3phen composite. The Brunauer–Emmett–Teller (BET) analysis indicated that the specific surface area plays a crucial role in influencing the fluorescence intensity of SiO2@Eu(TTA)3phen, whereby the prepared mesoporous hollow silica further elevated the fluorescence intensity by 61.49%. Moreover, SiO2@Eu(TTA)3phen demonstrated 11.11% greater cyclic stability, heightened thermal stability, and enhanced alkaline resistance relative to SiO2@Eu(TTA)3phen.

Funder

Natural Scientific Foundation of China

State Key Project of International Cooperation Research

Shandong Double-Hundred Project

Program for Introducing Talents of Discipline to Universities

High-Level Discipline Program of Shandong Province of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3