A Hybrid Soft Actuator Inspired by Grass-Spike: Design Approach, Dynamic Model, and Applications

Author:

Choi Dong-WoonORCID,Lee Cho-WonORCID,Lee Duk-YeonORCID,Lee Dong-WookORCID,Yoon Han-UlORCID

Abstract

This paper presents the bio-mimetic design approach, the dynamic model, and potential applications for a hybrid soft actuator. The proposed hybrid soft actuator consists of two main parts: a cylinder-shaped rigid core and soft silicone spikes wrapped around the core’s surface. The key idea of the proposed design approach is to mimic the movement of a grass-spike at a functional level by converting the vibration force generated by a small electric motor with a counterweight in the rigid core into a propulsion force produced by the elastic restoration of the spikes. One advantage of this design approach is that the hybrid soft actuator does not need to be tethered by a tube line from an air compressor and is more amenable to fine control. In addition, the hybrid soft actuator can be modularized with a wire and a tubular passage, which in turn work as a linear actuator. The dynamic model of the hybrid soft actuator can be derived by applying Lagrangian mechanics, and unknown system parameters can be identified by the optimization process based on the empirical data. Two applications—an elbow manipulator and a robotic hand grasper—demonstrate the feasibility of the proposed actuator to perform a muscle-tendon action successfully.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3