Animal Sound Classification Using Dissimilarity Spaces

Author:

Nanni LorisORCID,Brahnam SherylORCID,Lumini AlessandraORCID,Maguolo Gianluca

Abstract

The classifier system proposed in this work combines the dissimilarity spaces produced by a set of Siamese neural networks (SNNs) designed using four different backbones with different clustering techniques for training SVMs for automated animal audio classification. The system is evaluated on two animal audio datasets: one for cat and another for bird vocalizations. The proposed approach uses clustering methods to determine a set of centroids (in both a supervised and unsupervised fashion) from the spectrograms in the dataset. Such centroids are exploited to generate the dissimilarity space through the Siamese networks. In addition to feeding the SNNs with spectrograms, experiments process the spectrograms using the heterogeneous auto-similarities of characteristics. Once the similarity spaces are computed, each pattern is “projected” into the space to obtain a vector space representation; this descriptor is then coupled to a support vector machine (SVM) to classify a spectrogram by its dissimilarity vector. Results demonstrate that the proposed approach performs competitively (without ad-hoc optimization of the clustering methods) on both animal vocalization datasets. To further demonstrate the power of the proposed system, the best standalone approach is also evaluated on the challenging Dataset for Environmental Sound Classification (ESC50) dataset.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3