Recognition of EEG Signal Motor Imagery Intention Based on Deep Multi-View Feature Learning

Author:

Xu Jiacan,Zheng Hao,Wang Jianhui,Li Donglin,Fang Xiaoke

Abstract

Recognition of motor imagery intention is one of the hot current research focuses of brain-computer interface (BCI) studies. It can help patients with physical dyskinesia to convey their movement intentions. In recent years, breakthroughs have been made in the research on recognition of motor imagery task using deep learning, but if the important features related to motor imagery are ignored, it may lead to a decline in the recognition performance of the algorithm. This paper proposes a new deep multi-view feature learning method for the classification task of motor imagery electroencephalogram (EEG) signals. In order to obtain more representative motor imagery features in EEG signals, we introduced a multi-view feature representation based on the characteristics of EEG signals and the differences between different features. Different feature extraction methods were used to respectively extract the time domain, frequency domain, time-frequency domain and spatial features of EEG signals, so as to made them cooperate and complement. Then, the deep restricted Boltzmann machine (RBM) network improved by t-distributed stochastic neighbor embedding(t-SNE) was adopted to learn the multi-view features of EEG signals, so that the algorithm removed the feature redundancy while took into account the global characteristics in the multi-view feature sequence, reduced the dimension of the multi-visual features and enhanced the recognizability of the features. Finally, support vector machine (SVM) was chosen to classify deep multi-view features. Applying our proposed method to the BCI competition IV 2a dataset we obtained excellent classification results. The results show that the deep multi-view feature learning method further improved the classification accuracy of motor imagery tasks.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3