Convolutional neural networks for decoding of covert attention focus and saliency maps for EEG feature visualization

Author:

Farahat AmrORCID,Reichert ChristophORCID,Sweeney-Reed Catherine MORCID,Hinrichs Hermann

Abstract

Abstract Objective. Convolutional neural networks (CNNs) have proven successful as function approximators and have therefore been used for classification problems including electroencephalography (EEG) signal decoding for brain–computer interfaces (BCI). Artificial neural networks, however, are considered black boxes, because they usually have thousands of parameters, making interpretation of their internal processes challenging. Here we systematically evaluate the use of CNNs for EEG signal decoding and investigate a method for visualizing the CNN model decision process. Approach. We developed a CNN model to decode the covert focus of attention from EEG event-related potentials during object selection. We compared the CNN and the commonly used linear discriminant analysis (LDA) classifier performance, applied to datasets with different dimensionality, and analyzed transfer learning capacity. Moreover, we validated the impact of single model components by systematically altering the model. Furthermore, we investigated the use of saliency maps as a tool for visualizing the spatial and temporal features driving the model output. Main results. The CNN model and the LDA classifier achieved comparable accuracy on the lower-dimensional dataset, but CNN exceeded LDA performance significantly on the higher-dimensional dataset (without hypothesis-driven preprocessing), achieving an average decoding accuracy of 90.7% (chance level  =  8.3%). Parallel convolutions, tanh or ELU activation functions, and dropout regularization proved valuable for model performance, whereas the sequential convolutions, ReLU activation function, and batch normalization components reduced accuracy or yielded no significant difference. Saliency maps revealed meaningful features, displaying the typical spatial distribution and latency of the P300 component expected during this task. Significance. Following systematic evaluation, we provide recommendations for when and how to use CNN models in EEG decoding. Moreover, we propose a new approach for investigating the neural correlates of a cognitive task by training CNN models on raw high-dimensional EEG data and utilizing saliency maps for relevant feature extraction.

Funder

Bundesministerium für Bildung und Forschung

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference56 articles.

1. Tensorflow: a system for large-scale machine learning;Abadi,2016

2. A comparative study of feature extraction methods in P300 detection;Amini,2010

3. Towards better understanding of gradient-based attribution methods for deep neural networks;Ancona,2018

4. Single-trial analysis and classification of ERP components—a tutorial;Blankertz;NeuroImage,2011

5. The BCI competition III: validating alternative approaches to actual BCI problems;Blankertz;IEEE Trans. Neural Syst. Rehabil. Eng.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3