Evaluation of Six Satellite Precipitation Products over the Chinese Mainland

Author:

Liu Zhenwei,Di ZhenhuaORCID,Qin Peihua,Zhang Shenglei,Ma Qian

Abstract

Satellite precipitation products have been applied to many research fields due to their high spatial and temporal resolution. However, satellite inversion of precipitation is indirect, and different inversion algorithms limit the accuracy of the measurement results, which leads to great uncertainty. Therefore, it is of great significance to quantify and record the error characteristics of different satellite precipitation products for their better application in hydrology and other research fields. In this study, based on CN05.1, which is a set of site–based interpolation data, we evaluated the accuracies of the six satellite precipitation datasets (IMERG–E, IMERG–L, IMERG–F, GSMaP, CMORPH, and PERSIANN–CDR) at different temporal scales (daily, monthly, and yearly) in mainland China for the period from 2001 to 2015. The results were as follows: (1) In terms of mean precipitation, IMERG–F was superior to other data in all areas. IMERG products and PERANN–CDR performed better than other products at all scales and were more suitable for precipitation research in mainland China. Site correction can effectively improve the accuracy of product inversion, so IMERG–F was significantly better than IMERG–E and IMERG–L. (2) Except PERSIANN–CDR, all precipitation products underestimated precipitation in the range of 1–4 mm/day and had a high coincidence with CN05.1 in the range of 4–128 mm/day. (3) The performance of six types of satellite precipitation products in summer was better than that in winter. However, the error was larger in seasons with more precipitation. (4) In the Qinghai–Tibet Plateau, where there are few stations, the inversion of precipitation by satellite products is closer to the actual situation, which is noteworthy. These results help users understand the characteristics of these products and improve algorithms for future algorithm developers.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference71 articles.

1. Trend detection in rainfall and evaluation of standardized precipitation index as a drought assessment index for rice–wheat productivity over IGR in India;Subash;Int. J. Climatol.,2011

2. Can near-real-time satellite precipitation products capture rainstorms and guide flood warning for the 2016 summer in south China?;Tang;IEEE Geosci. Remote Sens. Lett.,2017

3. Characteristics of precipitation in black soil region and response of soil moisture dynamics in Northeast China;Zou;Trans. Chin. Soc. Agric. Eng.,2011

4. Yordanova, N., Guerova, G., and Stoycheva, A. (2022, August 30). Application of GNSS Meteorology for Intense Precipitation Case Studies in Bulgaria. Available online: http://suada.phys.uni-sofia.bg/wordpress/wp-content/uploads/2015/02/yordanova_et_al_2013.pdf.

5. Temporal and spatial variations of precipitation in Northwest China during 1960–2013;Yang;Atmos. Res.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3