Microscale Lateral Perovskite Light Emitting Diode Realized by Self-Doping Phenomenon

Author:

Gao Wenzhe1ORCID,Huang He2ORCID,Wang Chenming3ORCID,Zhang Yongzhe1ORCID,Zheng Zilong2ORCID,Li Jinpeng3ORCID,Chen Xiaoqing1ORCID

Affiliation:

1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

2. Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China

3. Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China

Abstract

High-definition near-eye display technology has extremely close sight distance, placing a higher demand on the size, performance, and array of light-emitting pixel devices. Based on the excellent photoelectric performance of metal halide perovskite materials, perovskite light-emitting diodes (PeLEDs) have high photoelectric conversion efficiency, adjustable emission spectra, and excellent charge transfer characteristics, demonstrating great prospects as next-generation light sources. Despite their potential, the solubility of perovskite in photoresist presents a hurdle for conventional micro/nano processing techniques, resulting in device sizes typically exceeding 50 μm. This limitation impedes the further downsizing of perovskite-based components. Herein, we propose a plane-structured PeLED device that can achieve microscale light-emitting diodes with a single pixel device size < 2 μm and a luminescence lifetime of approximately 3 s. This is accomplished by fabricating a patterned substrate and regulating ion distribution in the perovskite through self-doping effects to form a PN junction. This breakthrough overcomes the technical challenge of perovskite–photoresist incompatibility, which has hindered the development of perovskite materials in micro/nano optoelectronic devices. The strides made in this study open up promising avenues for the advancement of PeLEDs within the realm of micro/nano optoelectronic devices.

Funder

Beijing Natural Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3