Microtia Ear Reconstruction with Patient-Specific 3D Models—A Segmentation Protocol

Author:

Rodríguez-Arias Juan PabloORCID,Gutiérrez Venturini AlessandroORCID,Pampín Martínez Marta MaríaORCID,Gómez García Elena,Muñoz Caro Jesús Manuel,San Basilio MariaORCID,Martín Pérez Mercedes,Cebrián Carretero José LuisORCID

Abstract

(1) Background: In recent years, three-dimensional (3D) templates have replaced traditional two-dimensional (2D) templates as visual guides during intra-operative carving of the autogenous cartilage framework in microtia reconstruction. This study aims to introduce a protocol of the fabrication of patient-specific, 3D printed and sterilizable auricular models for autogenous auricular reconstruction. (2) Methods: The patient’s unaffected ear was captured with a high-resolution surface 3D scan (Artec Eva) and post-processed in order to obtain a clean surface model (STL format). In the next step, the ear was digitally mirrored, segmented and separated into its component auricle parts for reconstruction. It was disassembled into helix, antihelix, tragus and base and a physical model was 3D printed for each part. Following this segmentation, the cartilage was carved in the operating room, based on the models. (3) Results: This segmentation technique facilitates the modeling and carving of the scaffold, with adequate height, depth, width and thickness. This reduces both the surgical time and the amount of costal cartilage used. (4) Conclusions: This segmentation technique uses surface scanning and 3D printing to produce sterilizable and patient-specific 3D templates.

Publisher

MDPI AG

Subject

General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3