Author:
Zeng Wen,Lin Feng,Shi Tingchun,Zhang Renji,Nian Yongyan,Ruan Jie,Zhou Tianrui
Abstract
PurposeIn plastic reconstruction surgeries, total auricular reconstruction for microtia is a real challenge. Presently, autogenous costal cartilage and MEDPOR are the chosen materials but none can satisfy the requirements of orthopaedic operation. The purpose of this paper is to examine how to fabricate an ear scaffold with a good shape.Design/methodology/approachA new approach to form the auricle framework is described. CT scan data of the patient's contralateral “good ear” are used to generate a 3D reconstruction model of the new ear. This model is then imported into rapid prototyping (RP) software to slice. The sliced data drive the fused deposition modeling (FDM) machine to build the ear framework layer by layer. Based on the actual shape of the computer model, FDM technology produces a real feel ear framework to match the size of the opposite good ear.FindingsAn artificial human ear was built using FDM technology based on CT images. The auricular framework with polyurethane was a porous structure with good flexibility and biocompatibility. After implanting into the mouse, a real life human ear appeared on the back of the mouse. The experiment indicated that this method provided an efficient way to macrotia reconstruction.Originality/valueThe freeform fabrication technique combined with CT image reconstruction could provide an efficient way to produce a porous structure and solve the framework carving problem in microtia reconstruction.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献