Evaluating the Efficacy and Optimal Deployment of Thermal Infrared and True-Colour Imaging When Using Drones for Monitoring Kangaroos

Author:

Brunton Elizabeth A.ORCID,Leon Javier X.ORCID,Burnett Scott E.ORCID

Abstract

Advances in drone technology have given rise to much interest in the use of drone-mounted thermal imagery in wildlife monitoring. This research tested the feasibility of monitoring large mammals in an urban environment and investigated the influence of drone flight parameters and environmental conditions on their successful detection using thermal infrared (TIR) and true-colour (RGB) imagery. We conducted 18 drone flights at different altitudes on the Sunshine Coast, Queensland, Australia. Eastern grey kangaroos (Macropus giganteus) were detected from TIR (n=39) and RGB orthomosaics (n=33) using manual image interpretation. Factors that predicted the detection of kangaroos from drone images were identified using unbiased recursive partitioning. Drone-mounted imagery achieved an overall 73.2% detection success rate using TIR imagery and 67.2% using RGB imagery when compared to on-ground counts of kangaroos. We showed that the successful detection of kangaroos using TIR images was influenced by vegetation type, whereas detection using RGB images was influenced by vegetation type, time of day that the drone was deployed, and weather conditions. Kangaroo detection was highest in grasslands, and kangaroos were not successfully detected in shrublands. Drone-mounted TIR and RGB imagery are effective at detecting large mammals in urban and peri-urban environments.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3