ExoProK: A Practical Method for the Isolation of Small Extracellular Vesicles from Pleural Effusions

Author:

Antonopoulos Dionysios,Tsilioni IreneORCID,Tsiara Sophia,Moustaka Eirini,Ladias Spyridon,Perlepe Garyfallia,Theoharides Theoharis C.,Gourgoulianis Konstantinos I.ORCID,Balatsos Nikolaos A. A.ORCID

Abstract

Extracellular vesicles (EVs) are cell-secreted, lipid membrane-enclosed nanoparticles without functional nucleus. EV is a general term that includes various subtypes of particles named microvesicles, microparticles, ectosomes or exosomes. EVs transfer RNA, DNA and protein cargo between proximal and distant cells and tissues, thus constituting an organism-wide signal transduction network. Pathological tissues secrete EVs that differ in their cargo composition compared to their healthy counterparts. The detection of biomarkers in EVs from biological fluids may aid the diagnosis of disease and/or monitor its progression in a minimally invasive manner. Among biological fluids, pleural effusions (PEs) are integrated to clinical practice, as they accompany a wide variety of lung disorders. Due to the proximity with the pleura and the lungs, PEs are expected to be especially enriched in EVs that originate from diseased tissues. However, PEs are among the least studied biofluids regarding EV-specialized isolation methods and related biomarkers. Herein, we describe a practical EV isolation method from PEs for the screening of EV RNA biomarkers in clinical routine. It is based on a Proteinase K treatment step to digest contaminants prior to standard polyethylene-glycol precipitation. The efficiency of the method was confirmed by transmission electron microscopy, nanoparticle tracking analysis and Western blot. The reliability and sensitivity of the method towards the detection of EV-enriched RNA biomarkers from multiple PEs was also demonstrated.

Publisher

MDPI AG

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Structural Biology,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3