Adaptive Prediction of Water Droplet Infiltration Effectiveness of Sprinkler Irrigation Using Regularized Sparse Autoencoder–Adaptive Network-Based Fuzzy Inference System (RSAE–ANFIS)

Author:

Liang ZhongweiORCID,Liu Xiaochu,Zou Tao,Xiao Jinrui

Abstract

As the high productive efficiency of sprinkler irrigation is largely based on balanced soil moisture distribution, it is essential to study the exact effectiveness of water droplet infiltration, which provides a theoretical basis for rationally scheduling the circulation efficiency of groundwater in agricultural irrigation performance. This research carried out adaptive prediction of the droplet infiltration effectiveness of sprinkler irrigation by using a novel approach of a regularized sparse autoencoder–adaptive network-based fuzzy inference system (RSAE–ANFIS), for the purpose of quantifying actual water droplet infiltration and effectiveness results of precision irrigation in various environmental conditions. The intelligent prediction experiment we implemented could be phased as: the demonstration of governing equations of droplet infiltration for sprinkler irrigation modeling; the measurement and computation of probability densities in water droplet infiltration; innovative establishment and working analysis of RSAE–ANFIS; and the adaptive prediction of infiltration effectiveness indexes, such as average soil moisture depth increment (θ, mm), irrigation infiltration efficiency (ea, %), irrigation turn duration efficiency (et, mm/min), and the uniformity coefficient of soil moisture infiltration (Cu, %), which were implemented to provide a comprehensive illustration for the effective scheduling of sprinkler irrigation. Result comparisons indicated that when jetting pressure (Pw) was 255.2 kPa, the impinge angle (Wa) was 42.5°, the water flow rate (Fa) was 0.67 kg/min, and continuous irrigation time (Tc) was 32.4 min (error tolerance = ±5%, the same as follows), thereby an optimum and stable effectiveness quality of sprinkler irrigation could be achieved, whereas average soil moisture depth increment (θ) was 57.6 mm, irrigation infiltration efficiency (ea) was 62.5%, irrigation turn duration efficiency (et) was 34.5 mm/min, and the uniformity coefficient of soil moisture infiltration (Cu) was 53.6%, accordingly. It could be concluded that the proposed approach of the regularized sparse autoencoder–adaptive network-based fuzzy inference system has outstanding predictive capability and possesses much better working superiority for infiltration effectiveness in accuracy and efficiency; meanwhile, a high agreement between the adaptive predicted and actual measured values of infiltration effectiveness could be obtained. This novel intelligent prediction system has been promoted constructively to improve the quality uniformity of sprinkler irrigation and, consequently, to facilitate the productive management of sprinkler irrigated agriculture.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

China National Spark Program

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3