Sedimentation and Erosion Patterns of the Lena River Anabranching Channel

Author:

Chalov SergeyORCID,Prokopeva KristinaORCID

Abstract

Lena River is one of the largest “pristine” undammed river systems in the World. In the middle and low (including delta) 1500 km course of the Lena main stem river forms complex anabranching patterns which are affected by continuous permafrost, degradation of the frozen ground and changes in vegetation (taiga and tundra). This study provides a high-resolution assessment of sediment behavior along this reach. Comprehensive hydrological field studies along the anabranching channel located in the middle, low and delta courses of the Lena River were performed from 2016 to 2022 including acoustic Doppler current profiler (ADCP) discharge measurements and sediment transport estimates by gravimetric analyses of sediment concentration data and surrogate measurements (optical by turbidity meters and acoustic by ADCP techniques). These data were used to construct regional relationships between suspended sediment concentrations (SSC, mg/L), turbidity (T, NTU) and backscatter intensity (BI, dB) values applicable for the conditions of the Lena River. Further, field data sets were used to calibrate the seasonal relationships between Landsat reflectance intensities and field surface sediment concentration data. Robust empirical models were derived between the field surface sediment concentration and surface reflectance data for various hydrological seasons. Based on the integration of in situ monitoring and remote sensing data we revealed significant discrepancies in the spatial and seasonal patterns of the suspended sediment transport between various anabranching reaches of the river system. In the middle course of the Lena River, due to inundation of vegetated banks and islands, a downward decrease in sediment concentrations is observed along the anabranching channel during peak flows. Bed and lateral scour during low water seasons effects average increase in sediment load along the anabranching channels, even though a significant (up to 30%) decline in SSC occurs within the particular reaches of the main channel. Deposition patterns are typical for the secondary channels. The anabranching channel that was influenced by the largest tributaries (Aldan and Viluy) is characterized by the sediment plumes which dominate the spatial and temporal sediment distribution. Finally, in the distributary system of the Lena delta, sediment transport is mostly increased downwards, predominantly under higher discharges and along main distributary channels due to permafrost-dominated bank degradation.

Funder

Russian Scientific Foundation

Kazan Federal University Strategic Academic Leadership Program

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference61 articles.

1. Increasing River Discharge to the Arctic Ocean;Peterson;Science,2002

2. Channel changes in largest Russian rivers: Natural and anthropogenic effects;Alexeevsky;Int. J. River Basin Manag.,2013

3. Environmental and human impacts on sediment transport of the largest Asian rivers of Russia and China;Chalov;Environ. Earth Sci.,2018

4. Iron isotope systematics in Arctic rivers;Escoube;Comptes Rendus Geosci.,2015

5. Sediment transport to the Laptev Sea—Hydrology and geochemistry of the Lena River;Rachold;Polar Res.,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3