Interpretation of Signals Recorded by Ocean-Bottom Pressure Gauges during the Passage of Atmospheric Lamb Wave on 15 January 2022

Author:

Nosov Mikhail A.12ORCID,Kolesov Sergey V.12ORCID,Sementsov Kirill A.3

Affiliation:

1. Chair of Physics of Sea and Inland Water, Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russia

2. Institute of Marine Geology and Geophysics, Far Eastern Branch of Russian Academy of Sciences, Yuzhno-Sakhalinsk 693022, Russia

3. Institute of Seismology and Volcanology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

Abstract

The eruption of the Hunga Tonga–Hunga Ha’apai volcano on 15 January 2022 was the first powerful explosive eruption in history to be recorded with high quality by a wide range of geophysical equipment. The atmospheric Lamb wave caused by the explosion repeatedly circled the Earth and served as one of the reasons for the formation of tsunami waves. In this paper, the Lamb wave manifestations are analyzed in the recordings of tsunamimeters, i.e., in data from DONET and DART pressure sensors located in the area of the Japanese Islands. The work is aimed at studying the physics of the formation of pressure variations at the ocean floor in order to develop a method for isolating free gravity waves in records obtained by bottom pressure sensors. Within the framework of shallow water theory, an analysis of the response of the water layer to the atmospheric Lamb wave was performed. This response combines a forced perturbation, the amplitude of which depends on the depth of the ocean, and free gravity waves arising as a result of the restructuring of the forced perturbation on the submarine slopes. Analytical formulas are given for the amplitude and energy of the forced perturbation and free waves arising at the depth jump. With the aid of numerical simulation, the finite length of a slope was revealed to significantly affect the parameters of free waves when exceeding 50 km. The analysis of in situ data (DONET, DART) confirms the validity of theoretical concepts presented in the work. In particular, it is shown that variations of bottom pressure in the deep ocean exceed the amplitude of atmospheric pressure fluctuations in the Lamb wave.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3