Snow Cover Mapping Based on SNPP-VIIRS Day/Night Band: A Case Study in Xinjiang, China

Author:

Chen Baoying1,Zhang Xianfeng1ORCID,Ren Miao1,Chen Xiao1,Cheng Junyi1ORCID

Affiliation:

1. Institute of Remote Sensing and Geographic Information Systems, Peking University, 5 Summer Palace Road, Beijing 100871, China

Abstract

Detailed snow cover maps are essential for estimating the earth’s energy balance and hydrological cycle. Mapping the snow cover across spatially extensive and topographically complex areas with less or no cloud obscuration is challenging, but the SNPP-VIIRS Day/Night Band (DNB) nighttime light data offers a potential solution. This paper aims to map snow cover distribution at 750 m resolution across the diverse 1,664,900 km2 of Xinjiang, China, based on SNPP-VIIRS DNB radiance. We implemented a swarm intelligent optimization technique Krill Herd algorithm, which finds the optimal threshold value by taking Otsu’s method as the objective function. We derived SNPP-VIIRS DNB snow maps of 14 consecutive scenes in December 2021, compared our snow-covered area estimations with those from MODIS and AMSR2 standard snow cover products, and generated composite snow maps by merging MODIS and SNPP-VIIRS DNB data. Results show that SNPP-VIIRS DNB snow maps are capable of providing reliable snow cover maps superior to MODIS and AMSR2, with an overall accuracy level of 84.66%. The composite snow maps at 500 m spatial resolution provided 55.85% more information on snow cover distribution than standard MODIS products and achieved an overall accuracy of 84.69%. Our study demonstrated the feasibility of snow cover detection in Xinjiang based on SNPP-VIIRS DNB, which can serve as a supplementary dataset for MODIS estimations where clouded pixels are present.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference59 articles.

1. Remote sensing of snow—A review of available methods;Dietz;Int. J. Remote Sens.,2011

2. Estimation of snow depth from passive microwave brightness temperature data in forest regions of northeast China;Che;Remote Sens. Environ.,2016

3. Long-term snow, climate, and streamflow trends at the Reynolds Creek Experimental Watershed, Owyhee Mountains, Idaho, United States;Nayak;Water Resour. Res.,2010

4. Cousins, K. (2017). The Economic Benefits and Costs of Snow in the Upper Colorado Basin, Earth Economics.

5. Snow Cover Monitoring from Remote-Sensing Satellites: Possibilities for Drought Assessment;Kongoli;Remote Sensing of Drought: Innovative Monitoring Approaches,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3