An Automated System to Monitor River Ice Conditions Using Visible Infrared Imaging Radiometer Suite Imagery

Author:

Temimi Marouane1ORCID,Abdelkader Mohamed1ORCID,Tounsi Achraf1,Chaouch Naira2,Carter Shawn3,Sjoberg Bill4,Macneil Alison5,Bingham-Maas Norman5

Affiliation:

1. Department of Civil, Environmental and Ocean Engineering (CEOE), Stevens Institute of Technology, Hoboken, NJ 07030, USA

2. Gildart Haase School of Computer Sciences and Engineering, Fairleigh Dickinson University, Teaneck, NJ 07666, USA

3. NOAA, National Water Center, Tuscaloosa, AL 35401, USA

4. NOAA, JPSS Program Science Office, College Park, MD 20740, USA

5. NOAA, National Weather Service, Northeast River Forecast Center, Norton, MA 02766, USA

Abstract

This study presents an innovative, automated deep learning-based technique for near real-time satellite monitoring of river ice conditions in northern watersheds of the United States and Canada. The method leverages high-resolution imagery from the VIIRS bands onboard the NOAA-20 and NPP satellites and employs the U-Net deep learning algorithm for the semantic segmentation of images under varying cloud and land surface conditions. The system autonomously generates detailed maps delineating classes such as water, land, vegetation, snow, river ice, cloud, and cloud shadow. The verification of system outputs was performed quantitatively by comparing with existing ice extent maps in the northeastern US and New Brunswick, Canada, yielding a Probability of Detection of 0.77 and a False Alarm rate of 0.12, suggesting commendable accuracy. Qualitative assessments were also conducted, corroborating the reliability of the system and underscoring its utility in monitoring hydraulic and hydrological processes across northern watersheds. The system’s proficiency in accurately capturing the phenology of river ice, particularly during onset and breakup times, testifies to its potential as a valuable tool in the realm of river ice monitoring.

Funder

Cooperative Institute for Research to Operations in Hydrology

NASA

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3