River Ice Mapping from Landsat-8 OLI Top of Atmosphere Reflectance Data by Addressing Atmospheric Influences with Random Forest: A Case Study on the Han River in South Korea

Author:

Han Hyangsun1ORCID,Kim Taewook1,Kim Seohyeon1

Affiliation:

1. Department of Geophysics, Kangwon National University, Chuncheon 24341, Republic of Korea

Abstract

Accurate river ice mapping is crucial for predicting and managing floods caused by ice jams and for the safe operation of hydropower and water resource facilities. Although satellite multispectral images are widely used for river ice mapping, atmospheric contamination limits their effectiveness. This study developed river ice mapping models for the Han River in South Korea using atmospherically uncorrected Landsat-8 Operational Land Imager (OLI) multispectral reflectance data, addressing atmospheric influences with a Random Forest (RF) classification approach. The RF-based river ice mapping models were developed by implementing various combinations of input variables, incorporating the Landsat-8 multispectral top-of-atmosphere (TOA) reflectance, normalized difference indices for snow, water, and bare ice, and atmospheric factors such as aerosol optical depth, water vapor content, and ozone concentration from the Moderate Resolution Imaging Spectroradiometer observations, as well as surface elevation from the GLO-30 digital elevation model. The RF model developed using all variables achieved excellent performance in the classification of snow-covered ice, snow-free ice, and water, with an overall accuracy and kappa coefficient exceeding 98.4% and 0.98 for test samples, and higher than 83.7% and 0.75 when compared against reference river ice maps generated by manually interpreting the Landsat-8 images under various atmospheric conditions. The RF-based river ice mapping model for the atmospherically corrected Landsat-8 multispectral surface reflectance was also developed, but it showed very low performance under atmospheric conditions heavily contaminated by aerosol and water vapor. Aerosol optical depth and water vapor content were identified as the most important variables. This study demonstrates that multispectral reflectance data, despite atmospheric contamination, can be effectively used for river ice monitoring by applying machine learning with atmospheric auxiliary data to mitigate atmospheric effects.

Funder

Kangwon National University

National Research Foundation of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3