Affiliation:
1. School of Integrative Plant Science, Cornell University, Tower Rd, Ithaca, NY 14850, USA
2. Faculty of Geo-Information Science and Earth Observation, University of Twente, Hengelosestraat 99, 7514 AE Enschede, The Netherlands
3. Graduate School of Geography, Clark University, 950 Main Street, Worcester, MA 01610, USA
Abstract
Mapping arable field areas is crucial for assessing agricultural productivity but poses challenges in sub-Saharan agroecosystems because of diverse crop calendars, small and irregularly shaped fields, persistent cloud cover, and lack of high-quality model training data. This study proposes several methodological improvements to overcome these challenges. Specifically, it utilizes long-term MODIS data to stratify finer Sentinel-2 reflectance and Sentinel-1 backscatter image features on a per-pixel basis. It also incorporates texture features and employs a machine learning approach with over 300,000 samples. The eastern region of Ghana was stratified into seven seasonal strata exhibiting distinct vegetation seasonality, capturing diversity in crop calendars, using long-term MODIS (2001–2009) normalized difference vegetation index phenology. Three years (2017–2019) of Sentinel-1 and Sentinel-2 original bands at 20 m were composited into dry and wet seasonal features according to the strata, from which spectral, polarimetric, and texture features were extracted. The field boundaries were digitized using PlanetScope images (2018–2019). Random Forest classifier with 10-fold cross-validation and recursive feature elimination was used for feature selection and model building. Including topographic variables, out of 137 image features, only 11 features were found important. Sentinel-2 SWIR-based spectral features were most important, followed by Sentinel-1 polarimetric (VV) and elevation features. Half of the 11 features were variance texture features, followed by spectral features. The Random Forest classifier produced a 0.78 AUC score with overall precision, recall, and F1-score of 0.96, 0.78, and 0.85, respectively. While the precision for both classes was >0.90, the recall rate for arable areas was half that of non-arable areas. Future studies could improve the technical workflow with reliable balanced sampling, narrowband hyperspectral images, and fully polarized SAR images.
Funder
Omidyar Network’s Property Rights Initiative, now PLACE, and NASA
Subject
General Earth and Planetary Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献