Enhanced Detection of Artisanal Small-Scale Mining with Spectral and Textural Segmentation of Landsat Time Series

Author:

Fonseca Alejandro1ORCID,Marshall Michael Thomas2ORCID,Salama Suhyb3ORCID

Affiliation:

1. IABG Industrieanlagen-Betriebsgesellschaft, Hermann-Reicheltelt-Straße 3, 01109 Dresden, Germany

2. Department of Natural Resources, Faculty of Geo-Information Science and Earth Observation, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

3. Department of Water Resources, Faculty of Geo-Information Science and Earth Observation, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract

Artisanal small-scale mines (ASMs) in the Amazon Rainforest are an important cause of deforestation, forest degradation, biodiversity loss, sedimentation in rivers, and mercury emissions. Satellite image data are widely used in environmental decision-making to monitor changes in the land surface, but ASMs are difficult to map from space. ASMs are small, irregularly shaped, unevenly distributed, and confused (spectrally) with other land clearance types. To address this issue, we developed a reliable and efficient ASM detection method for the Tapajós River Basin of Brazil—an important gold mining region of the Amazon Rainforest. We enhanced detection in three key ways. First, we used the time-series segmentation (LandTrendr) Google Earth Engine (GEE) Application Programming Interface to map the pixel-wise trajectory of natural vegetation disturbance and recovery on an annual basis with a 2000 to 2019 Landsat image time series. Second, we segmented 26 textural features in addition to 5 spectral features to account for the high spatial heterogeneity in ASM pixels. Third, we trained and tested a Random Forest model to detect ASMs after eliminating irrelevant and redundant features with the Variable Selection Using Random Forests “ensemble of ensembles” technique. The out-of-bag error and overall accuracy of the final Random Forest was 3.73 and 92.6%, which are comparable to studies mapping large industrial mines with the normalized difference vegetation index (NDVI) and LandTrendr. The most important feature in our study was NDVI, followed by textural features in the near and shortwave infrared. Our work paves the way for future ASM regulation through large area monitoring from space with free and open-source GEE and operational satellites. Studies with sufficient computational resources can improve ASM monitoring with advanced sensors consisting of spectral narrow bands (Sentinel-2, Environmental Mapping and Analysis Program, PRecursore IperSpettrale della Missione Applicativa) and deep learning.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3