CGUN-2A: Deep Graph Convolutional Network via Contrastive Learning for Large-Scale Zero-Shot Image Classification

Author:

Li LiangweiORCID,Liu Lin,Du Xiaohui,Wang XiangzhouORCID,Zhang Ziruo,Zhang Jing,Zhang Ping,Liu Juanxiu

Abstract

Taxonomy illustrates that natural creatures can be classified with a hierarchy. The connections between species are explicit and objective and can be organized into a knowledge graph (KG). It is a challenging task to mine features of known categories from KG and to reason on unknown categories. Graph Convolutional Network (GCN) has recently been viewed as a potential approach to zero-shot learning. GCN enables knowledge transfer by sharing the statistical strength of nodes in the graph. More layers of graph convolution are stacked in order to aggregate the hierarchical information in the KG. However, the Laplacian over-smoothing problem will be severe as the number of GCN layers deepens, which leads the features between nodes toward a tendency to be similar and degrade the performance of zero-shot image classification tasks. We consider two parts to mitigate the Laplacian over-smoothing problem, namely reducing the invalid node aggregation and improving the discriminability among nodes in the deep graph network. We propose a top-k graph pooling method based on the self-attention mechanism to control specific node aggregation, and we introduce a dual structural symmetric knowledge graph additionally to enhance the representation of nodes in the latent space. Finally, we apply these new concepts to the recently widely used contrastive learning framework and propose a novel Contrastive Graph U-Net with two Attention-based graph pooling (Att-gPool) layers, CGUN-2A, which explicitly alleviates the Laplacian over-smoothing problem. To evaluate the performance of the method on complex real-world scenes, we test it on the large-scale zero-shot image classification dataset. Extensive experiments show the positive effect of allowing nodes to perform specific aggregation, as well as homogeneous graph comparison, in our deep graph network. We show how it significantly boosts zero-shot image classification performance. The Hit@1 accuracy is 17.5% relatively higher than the baseline model on the ImageNet21K dataset.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3