Embedded Zero-Shot Image Classification Based on Bidirectional Feature Mapping

Author:

Sun Huadong12ORCID,Zhen Zhibin1,Liu Yinghui1,Zhang Xu12,Han Xiaowei12,Zhang Pengyi1ORCID

Affiliation:

1. School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China

2. Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, Harbin 150028, China

Abstract

The zero-shot image classification technique aims to explore the semantic information shared between seen and unseen classes through visual features and auxiliary information and, based on this semantic information, to complete the knowledge migration from seen to unseen classes in order to complete the classification of unseen class images. Previous zero-shot work has either not extracted enough features to express the relationship between the sample classes or has only used a single feature mapping method, which cannot fully explore the information contained in the features and the connection between the visual–semantic features. To address the above problems, this paper proposes an embedded zero-shot image classification model based on bidirectional feature mapping (BFM). It mainly contains a feature space mapping module, which is dominated by a bidirectional feature mapping network and supplemented with a mapping network from visual to category label semantic feature space. Attention mechanisms based on attribute guidance and visual guidance are further introduced to weight the features to reduce the difference between visual and semantic features to alleviate the modal difference problem, and then the category calibration loss is utilized to assign a larger weight to the unseen class to alleviate the seen class bias problem. The BFM model proposed in this paper has been experimented on three public datasets CUB, SUN, and AWA2, and has achieved 71.9%, 62.8%, and 69.3% and 61.6%, 33.2%, and 66.6% accuracies under traditional and generalized zero-sample image classification settings, respectively. The experimental results verify the superiority of the BFM model in the field of zero-shot image classification.

Funder

Harbin City Science and Technology Plan Projects

Basic Research Support Program for Excellent Young Teachers in Pro-vincial Undergraduate Universities in Heilongjiang Province

Science and Technology Collaborative Innovation Project in Heilongjiang Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3