Green Synthesis, Characterization, Enzyme Inhibition, Antimicrobial Potential, and Cytotoxic Activity of Plant Mediated Silver Nanoparticle Using Ricinus communis Leaf and Root Extracts

Author:

Gul Anadil,Fozia ,Shaheen Asmat,Ahmad Ijaz,Khattak Baharullah,Ahmad Munir,Ullah RiazORCID,Bari AhmedORCID,Ali Syed Saeed,Alobaid Abdulrahman,Asmari Majid M.,Mahmood Hafiz M.ORCID

Abstract

The need of non-toxic synthesis protocols for nanoparticles arises developing interest in biogenic approaches. The present project was focused on cost effective, environment congenial synthesis of Ag nanoparticles and their biological applications. Leaf and root extracts of Ricinus communis were used as a reducing and stabilizing agent in synthesis process. A Proposed mechanism in published literature suggested that Indole-3-acetic acid, l-valine, triethyl citrate, and quercetin-3-0-p-d-glucopyranoside phytoconstituents of Ricinus communis act as reducing and capping agents. The synthesized Ag NPs were characterized with a help X-ray diffractometer, Transmission electron microscopy, UV-Vis spectrophotometry and Fourier Transform Infrared Spectroscopy (FTIR). The XRD results inveterate the synthesis of pure nano size crystalline silver particles. The FTIR data revealed the possible functional groups of biomolecules involved in bio reduction and capping for efficient stabilization of silver nanoparticles. TEM analysis confirmed the almost spherical morphology of synthesized particles with mean size 29 and 38 nm for R-Ag-NPs (root) and L-Ag-NPs (leaf), respectively. The stability of synthesized nanoparticles was examined against heat and pH. It was observed that synthesized nanoparticles were stable up to 100 °C temperature and also showed stability in neutral, basic and slightly acidic medium (pH 05–06) for several months while below pH 5 were unstable. The synthesized silver nanoparticles had promising inhibition efficiency in multiple applications, including as bactericidal/fungicidal agents and Urease/Xanthine oxidase enzymes inhibitors. The cytotoxicity of synthesized nanoparticles shows that the concentration under 20 μg/mL were biologically compatible.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Reference56 articles.

1. Silver nanoparticles: Green synthesis and their antimicrobial activities

2. Investigation of the antimicrobial effect of silver doped Zinc Oxide nanoparticles;Dowlatababdi;Nanomed. J.,2017

3. Distinct biological effects of different nanoparticles commonly used in cosmetics and medicine coatings;Julia;Cell Biosci.,2011

4. PEGylated nanoparticles for biological and pharmaceutical applications

5. Formation of Gold Nanoparticles by Laser Ablation in Aqueous Solution of Surfactant

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3